20. [Measurement] [Examined in 2011]

Solution

Approach I - volume

In a woodwork class, a student Jacky made a block figure of wood as shown below. The block is then dipped into a pail of paint. After the paint dried, the block is cut into 4 identical cubes along the dotted lines and taken apart. Jack measures the total unpainted area of the 4 cubes to be $150 \mathrm{~cm}^{2}$.

$* * *$
\therefore Let V be the volume of each cube.
Labelling and counting the unpainted surfaces,

Deduce that,
Area of the unpainted surfaces $=150 \mathrm{~m}^{2}$
$=6$ surfaces
$\Rightarrow 6 \times$ side $^{2}=150$
$\Rightarrow 6 \times$ side $^{2} \div 6=150 \div 6$
\Rightarrow side $^{2}=\frac{150}{6}=\frac{1507525}{\not \boxed{12} 1}$
\Rightarrow side $^{2}=\frac{150}{6}=\frac{1507525}{\not \boxed{121}}=25 \mathrm{~cm}^{2}$
\Rightarrow side \times side $=5 \mathrm{~cm} \times 5 \mathrm{~cm}$

$$
\Rightarrow \text { side }=5 \mathrm{~cm}
$$

\therefore The volume of each cube is
$\therefore V=$ side \times side \times side

$$
\begin{aligned}
& =5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& =125 \mathrm{~cm}^{3} \quad \text { (ans) }
\end{aligned}
$$

CheckBack

There is no easy CheckBack option for this question.
(checked)

Exam Report

Quite a number of candidates gave the correct answer for this question.
21. [Measurement] [Examined in 2011]

Solution

Approach I-geometry

In the figure below, OBCD and BDEF are rectangles and point C lies on the straight line $E F . O B=6 \mathrm{~cm}, O D=8 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$.

* * *

