5 to	6
6.0 Redox	06-1-M-05
	07ZZ06-1-M-05
MCQs 06-1-M-01 07ZZ06-1-M-01 A No. of moles of NaBrO ₃ = $\left(\frac{20}{1000}\right) \times 0.02$ = 0.0004	D The oxidation number of chlorine changes from -1 to 0. The oxidation number of manganese will change from +7 to +2. The electrode potential of the reduction of MnO ₄ ⁻ is +1.52V. Therefore the equation $2MnO_4^- + 16H^+ + 10Cl^- \rightarrow 2Mn^{2+} + 8H_2O + 5Cl_2$ is correct. (ans)
No. of moles of NH OH= $\left(-\frac{80}{2}\right) \times 0.01$	06-1-M-06
-0.0008	07ZZ06-1-M-06
$1 \text{ NaBrO}_3 = 2\text{NH}_2\text{OH}$ No. of electrons transferred = 3 Half equation for the oxidation of hydroxylamine:	C The electrode potential of the ClO_2/Cl^- half-cell is more positive than that of the $Cr^{3+}/Cr_2O_7^{2-}$ half-cell. Therefore ClO_2 will undergo reduction while Cr^{3+} will undergo oxidation. (ans)
$NH_2^+ + H_2O \rightarrow NO + 4H^+ + 3e \text{ (ans)}$	
<mark></mark>	06-1-M-07
06-1-M-02	072206-1-M-07
 O7ZZ06-1-M-02 B For the reaction between Ce and Fe, Ce⁴⁺ will undergo reduction whereas Fe²⁺ will undergo oxidation as the redox potential value of Ce is more positive. By comparing the redox potentials in this way, Sn²⁺ will undergo oxidation when reacted with 	C The oxidation state of the oxidizing agent will decrease. KBiO ₃ is the oxidizing agent as the oxidation state of Bi changes from +5 to +3 in BiCl ₃ . (ans)
Fe ³⁺ , and Sn ²⁺ will undergo oxidation while Ce ⁴⁺ will undergo reduction when reacted together under standard conditions. (ans)	07ZZ06-1-M-08 C The strongest reducing agent is most easily oxidized, meaning that it has the most negative electrode potential. Thus the strongest reducing
06-1-M-03	agent is Mg as it is most easily oxidized to Mg ²⁺ .
07ZZ06-1-M-03	(ans)
B Change in oxidation state of chlorine: from 0 in chlorine gas to -1 in chloride ion. There is a transfer of 2 electrons to NH_3OH^+ . The change in oxidation state of N: -1 in NH_3OH^+ to $+1$ in N_2O . (ans)	06-1-M-09 07ZZ06-1-M-09 C No. of moles of $Fe^{2+} = \left(\frac{100}{1000}\right) \times 0.02$
06-1-M-04 07ZZ06-1-M-04 C The positive electrode is where reduction takes place. In this case, lead has a less negative redox potential, and will form the positive electrode. The cell potential can be increased by both adding water or by dissolution of the solid metal. (ans)	= 0.002 No. of moles of $XO_3^- = \left(\frac{50}{1000}\right) \times 0.02$ = 0.001 $1 XO_3^- \equiv 2Fe^{2+}$ $2Fe^{2+} = 2Fe^{3+} + 2e^-$ No. of electrons transferred to $XO_3^- = 2$ New oxidation state of $X = +5 - 2 = +3$ (ans)
	<mark>ୁଞ୍ଚ</mark>