11 thermal properties of matter

content

- 11.1 Internal energy
- 11.2 Specific heat capacity
- 11.3 Melting, boiling and evaporation
 - Melting and boiling
 - Evaporation

11.4 Specific latent heat

Learning Outcomes:

Candidates should be able to:

- (a) describe a rise in temperature of a body in terms of an increase in its internal energy (random thermal energy)
- (b) define the terms heat capacity and specific heat capacity
- (c) recall and apply the relationship *thermal energy* = *mass* × *specific heat capacity* × *change in temperature* to new situations or to solve related problems
- (d) describe melting/solidification and boiling/condensation as processes of energy transfer without a change in temperature
- (e) explain the difference between boiling and evaporation
- (f) define the terms latent heat and specific latent heat
- (g) recall and apply the relationship *thermal energy* = *mass* × *specific latent heat* to new situations or to solve related problems
- (h) explain latent heat in terms of molecular behaviour
- (i) sketch and interpret a cooling curve

11.1 Internal energy

Describe

Heat

- **Heat** (or *thermal energy*) may be <u>transferred</u> from one region (or body) to another as a result of a <u>difference</u> in *temperature*.
- When two bodies are placed in *thermal contact*, the warmer body becomes cooler while the cooler body becomes warmer, *i.e.*, **heat** flows spontaneously from the warmer to cooler regions.

Internal energy

Every minute particle (such as ions, electrons, atoms or molecules) in a body has *potential* energy (*E*_p), due to their state and position, and, *kinetic* energy (*E*_k), due to their motion. Collectively, the <u>sum</u> of these energies is termed the **internal energy** (*U*) of the body, *i.e.*,

 $U = E_k + E_p$

Potentially, the *internal energy* of a system (a collection of minute particles) can be <u>released</u> for use. Usually it manifests the energy transfer in the form of *heat flow*.

• The *temperature* of a body is a measure of the *average kinetic energy* of the *minute particles* of the body. A <u>rise</u> in the *temperature* is therefore associated with an <u>increase</u> in the <u>average</u> *kinetic energy* of the particles, which <u>must</u> therefore imply an <u>increase</u> in the *internal energy* of the body.

Heat flow

- When a body is heated, its associated atoms or molecules start to move faster. *i.e.*, their *kinetic* energies are increased. So, in microscopic level, *heat* energy is stored in the form of *kinetic* energies in the atoms or molecules.
- The *kinetic energies* of the atoms or molecules is described as *random* **thermal energy**, to <u>avoid</u> confusion with the *kinetic* energy of the body as a whole.
- When the sum of kinetic energies in the particles <u>increases</u>, thermal energy and hence, internal energy <u>increases</u>, temperature being a gross measure of the state of the body <u>increases</u>.
- To <u>increase</u> the *internal energy* (mainly microscopic *kinetic energies*) of an object by a certain amount, the amount of *heat* to be supplied depends on its <u>type of material</u>, <u>rise in temperature</u> and <u>mass</u>, *i.e.*, capacity of absorbing or releasing *heat* varies from substance to substance.

Potential energy of particles in a body tends to be <u>small</u> and does not change very much (unless there is a <u>change</u> of state, e.g., liquid to gas); a <u>change</u> in internal energy is generally due to a <u>change</u> in kinetic energy.

Worked Example

Example 1

Distinguish between internal energies of gases and solids microscopically.

Solution:

From a microscopic point of view, for a gas its internal energy may consist almost entirely of the kinetic energy of the gas molecules. It may also consist of the potential energy of these molecules in a gravitational, electric, or magnetic field. For a material solid, it may also consist of the potential energy of attraction or repulsion between the individual molecules of the material.

11.2 Specific heat capacity

Describe

Heat capacity

Some materials are harder to heat up than others. The molecules in a liquid such as water require <u>more</u> energy to move faster <u>than</u> do copper atoms in a solid. So, in order to record 1° C increase in *temperature*, liquids would require more heat energy than solids.

Heat capacity, *C*, of a body is defined as the amount of thermal energy (*Q*) required to raise its temperature (θ) by one degree, without going through a change in state.

SI unit of heat capacity is joule per kelvin or joule per degree Celsius [JK⁻¹ or J°C⁻¹].

• In symbols,
$$C = \frac{Q}{\Delta \theta}$$

where, C = heat capacity (J K⁻¹, J °C⁻¹) Q = heat or thermal energy absorbed or released (J) $\Delta \theta =$ change in temperature (K or °C)

 $(\theta_{\text{final}} - \theta_{\text{initial}})$ or $(T_{\text{final}} - T_{\text{initial}})$

Worked Example

Example 1

Calculate heat capacity of a piece of brass, if the heat of 8000 J is given to raise its temperature from 40 $^\circ$ C to 60 $^\circ$ C.

Solution:

Recall, heat capacity, $C = \frac{Q}{\Delta \theta}$ The values given: Q = 8000 J; $\Delta \theta = (60 - 40) = 20^{\circ}\text{C}$ Substituting: $C = 8000/20 = 400 \text{ J}^{\circ}\text{C}^{-1}$ *Heat capacity* of the brass piece is 400 J^{\circ}\text{C}^{-1}. **(ans)**

S

Specific heat capacity

The <u>greater</u> the mass, the more atoms or molecules that need to be speeded up, and <u>more</u> *thermal energy* is needed to produce a given *temperature* <u>rise</u>. It is thus more common to consider the *heat capacity per unit mass* or *specific heat capacity* of the body.

Specific heat capacity, *c*, of a body is defined as the amount of thermal energy (*Q*) required to raise the temperature (θ) of a <u>unit</u> mass of it by one degree, without going through a change in state.

SI unit of specific heat capacity is joule per kilogram per kelvin or joule per kilogram per degree Celsius [Jkg⁻¹K⁻¹ or Jkg⁻¹°C⁻¹].

• In symbols, $c = \frac{C}{m} = \frac{Q}{m \times \Delta \theta}$ or $Q = m \times c \times \Delta \theta$

 $\begin{bmatrix} \text{thermal} \\ \text{energy} \end{bmatrix} = \begin{bmatrix} \text{mass} \end{bmatrix} \times \begin{bmatrix} \text{specific} \\ \text{heat} \\ \text{capacity} \end{bmatrix} \times \begin{bmatrix} \text{change in} \\ \text{temperature} \end{bmatrix}$

where, c = specific heat capacity (Jkg⁻¹K⁻¹, Jkg^{-1°}C⁻¹)

- C = heat capacity (JK⁻¹ or J[°]C⁻¹)
- *m* = mass of the substance (kg)
- Q = heat or thermal energy absorbed or released (J)

 $\Delta \theta$ = change in temperature (K or °C)

- Specific heat capacity of gases is <u>higher</u> than that of liquids and <u>much higher</u> than that of solids. The substances with <u>higher</u> specific heat capacity cool or warm <u>very slowly</u> compared to the substances with <u>lower</u> specific heat capacity.
- The specific heat capacity of water (liquid) is 4200 Jkg^{-1°}C⁻¹ and for copper (solid) it is 400 Jkg^{-1°}C⁻¹.

copper takes less time than water to increase its temperature by say, 5 $^{\circ}\mathrm{C}$

- © The **temperature** of an object gives a measure of how hot or cold it is, but it is <u>not</u> a measure of how much *internal energy* the object contains.
- With gases, the molar heat capacity (the heat capacity of one mole of a gas at constant pressure or constant volume) is generally more useful than the specific heat capacity, which is based on mass.

Worked Examples

Example 1

Calculate the required amount of energy to raise the temperature of 0.15 kg of water by 20 °C. The *specific heat capacity* of water is 4200 Jkg⁻¹ °C⁻¹.

Solution:

Recall, $Q = m \times c \times \Delta \theta$ The values given: m = 0.15 kg, c = 4200 Jkg^{-1°}C⁻¹, $\Delta \theta = 20$ °C. Substituting: Q = 0.15 kg $\times 4200$ Jkg^{-1°}C⁻¹ $\times 20$ °C = 12600 J 12,600 J of thermal energy is required. (ans)

③ When the temperature increases, the change in temperature and energy is taken to be positive.

Example 2

Calculate the amount of energy released from a 0.2 kg copper, when it cools from 30° C to 25° C. The specific heat capacity of copper is $400 \text{ Jkg}^{-1} \text{ C}^{-1}$.

Solution:

Recall, $Q = m \times c \times \Delta \theta$ The values given: $m = 0.2 \text{ kg}, c = 400 \text{ Jkg}^{-1\circ}\text{C}^{-1}, \vartheta = (25-30)^{\circ}\text{C}^{-1} = (-5)^{\circ}\text{C}.$ Substituting: $Q = 0.20 \text{ kg} \times 400 \text{ Jkg}^{-1\circ}\text{C}^{-1} \times (-5)^{\circ}\text{C} = -400 \text{ J}$ $400 \text{ J of thermal energy is <u>released</u>. (ans)$

When the temperature <u>decreases</u>, change in temperature and energy are taken to be <u>negative</u>.

Example 3

What is the temperature when 0.030 kJ of energy is supplied to a 5.0 g of iron rod at 3.0° C.? The *specific heat capacity* of iron is 460 Jkg⁻¹°C⁻¹.

Solution:

Recall,
$$Q = m \times c \times \Delta \theta \implies \Delta \theta = \frac{Q}{m \times c}$$

Let final temperature be $\theta^{\circ}C$

S

S

 \Rightarrow : rise in temperature = $(\theta - 3.0)^{\circ}$ C

The values given: m = (5.0/1000) kg, $c = 460 \text{ Jkg}^{-1} \circ \text{C}^{-1}$, Q = 30 J

Substituting:
$$(\theta - 3.0)^{\circ}C = \frac{30 \text{ J}}{(5.0/1000) \text{ kg} \times 460 \text{ Jkg}^{-1} \text{ °}C^{-1}}$$

 $\theta - 3.0 = \frac{30 \times 1000}{5.0 \times 460} \text{ °}C = 13 \text{ °}C$

The current final temperature is $13^{\circ}C$ (ans)

Practical importance of the high specific heat capacity of water

- The specific heat capacity (s.h.c.) of water is relatively <u>high</u> compared to alcohol (liquid) and metals (solids). Hence,
 - Water is suitable for use as **coolant** on cars.
 - The s.h.c. of the seas is higher than the s.h.c. of the land masses, it leads to **milder climate** in the coastal areas, *i.e.*, a favourite settlement choice for man, plants and animals alike.
 - **Warm-blooded animals** are possible as the large percentage of water in the body keeps the animal's temperature stable with little fluctuations.
 - Water is used as fire extinguisher due to its high heat capacity.

S